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The evolution of an intense barotropic vortex on the β-plane is analysed for the case
of finite Rossby deformation radius. The analysis takes into account conservation of
vortex energy and enstrophy, as well as some other quantities, and therefore makes
it possible to gain insight into the vortex evolution for longer times than was done
in previous studies on this subject. Three characteristic scales play an important role
in the evolution: the advective time scale Ta (a typical time required for a fluid
particle to move a distance of the order of the vortex size), the wave time scale Tw
(the typical time it takes for the vortex to move through its own radius), and the
distortion time scale Td (a typical time required for the change in relative vorticity
of the vortex to become of the order of the relative vorticity itself). For an intense
vortex these scales are well separated, Ta � Tw � Td, and therefore one can consider
the vortex evolution as consisting of three different stages. The first one, t 6 Tw , is
dominated by the development of a near-field dipolar circulation (primary β-gyres)
accelerating the vortex. During the second stage, Tw 6 t 6 Td, the quadrupole and
secondary axisymmetric components are intensified; the vortex decelerates. During
the last, third, stage the vortex decays and is destroyed. Our main attention is focused
on exploration of the second stage, which has been studied much less than the
first stage. To describe the second stage we develop an asymptotic theory for an
intense vortex with initially piecewise-constant relative vorticity. The theory allows
the calculation of the quadrupole and axisymmetric corrections, and the correction to
the vortex translation speed. Using the conservation laws we estimate that the vortex
lifetime is directly proportional to the vortex streamfunction amplitude and inversely
proportional to the squared group velocity of Rossby waves. For open-ocean eddies
a typical lifetime is about 130 days, and for oceanic rings up to 650 days. Analysis of
the residual produced by the asymptotic solution explains why this solution is a good
approximation for times much longer than the expected formal range of applicability.
All our analytical results are in a good qualitative agreement with several numerical
experiments carried out for various vortices.

1. Introduction
It is clearly seen from numerous numerical, laboratory and analytical investigations

that the evolution of an intense quasi-geostrophic localized vortex on a β-plane
consists of three different stages (see § 2 for a quantitative analysis). During the first
stage the development of a secondary dipole circulation (the so-called β-gyre) in the
vicinity of the vortex plays a major role. To describe this mechanism we see that the
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monopole, for instance a cyclone, induces a northward (southward) motion to the
east (west) of itself. (Here and in what follows we use the northern hemisphere sign
convention.) In accordance with the law for conservation of potential vorticity the β-
effect generates anticyclonic (cyclonic) vorticity to the east (west) of the initial vortex,
i.e. a dipole is generated. This vortex-by-vortex induction also takes place in the case
when the nonlinear term in the governing equation is neglected, and can therefore be
interpreted as the radiation of Rossby waves by the localized monopole. Thus one can
say that the β-gyres are created by the near-field radiation of Rossby waves. In the
presence of nonlinearity the β-gyres advect the vortex along the dipole axis. In turn
the dipole is advected by the vortex, resulting in a turning of the dipole axis in the
same sense as that of the vortex; that is, counterclockwise (clockwise) for a cyclone
(anticyclone). Thus a cyclone (anticyclone) moves northwestward (southwestward)
along a curved trajectory; the trajectory shape and the β-gyres structure are related
to the strength and structure of the initial vortex.

This stage has been studied closely in the laboratory (e.g. Firing & Beardsley 1976)
and in numerical experiments (e.g. McWilliams & Flierl 1979; Mied & Lindemann
1979; Fiorino & Elsberry 1989). On the analytical side, Reznik & Dewar (1994)
calculated the β-gyres and the trajectory of an arbitrary axisymmetric non-divergent
barotropic vortex. Llewellyn Smith (1997) developed an analogous theory for a non-
localized vortex. However, for divergent vortices, only some special cases have proven
to be tractable. For example, point vortices (Reznik 1992) and vortices with piecewise-
uniform potential vorticity (Sutyrin & Flierl 1994) were successfully considered in a
one-and-half layer model. Recently Reznik, Grimshaw & Sriskandarajah (1997) and
Sutyrin & Morel (1997) investigated this stage in the stratified case (for layered
models). (Here and in what follows we use the terms ‘divergent’ and ‘non-divergent’
with reference to quasi-geostrophic models with finite and infinite deformation radius
Rd, respectively. Also, sometimes we use the term ‘Rossby scale’ instead of ‘deformation
radius’.)

Comparison of these analytical results with numerical simulations shows that even
a simple model taking into account only the first azimuthal harmonics (the β-gyres)
gives surprisingly good results when describing the vortex evolution for times far
beyond the formal time of applicability for this model (e.g. Reznik & Dewar 1994;
Sutyrin et al. 1994). The same conclusion follows from the numerical experiments by
Ross & Kurihara (1992) using a model with a small number of azimuthal modes to
calculate the trajectory of an intense non-divergent vortex. Obviously such models
strongly distort the far-field radiated Rossby waves, and therefore one can assume that
the vortex dynamics is determined mainly by the near-field processes for relatively
long times which, in turn, can greatly simplify the theoretical description of the vortex
evolution.

In the second stage the influence of the other azimuthal harmonics generated
by wave radiation and nonlinearity has to be taken into account. This influence
gradually reduces the vortex amplitude and in doing so decelerates the vortex motion
(e.g. Reznik & Dewar 1994; Sutyrin et al. 1994). At the same time, changes to the
relative vorticity of the vortex remain relatively small, so that the vortex amplitude
exceeds the amplitude of the radiated field. In the final third stage, the vortex distortion
becomes strong and its amplitude decreases to the background level, i.e. the vortex
ceases to exist as a coherent structure.

The second stage (which obviously is of more interest than the third one) has been
less well-studied, even numerically. The exception is the numerical study by Sutyrin
et al. (1994) which will be discussed throughout this paper. There have been a few
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attempts to describe this stage analytically for various types of eddies. All the theories
that we are aware of are based on the assumption that in the course of time the
vortex tends to some quasi-stationary state when its zonal velocity greatly exceeds the
meridional one and the Rossby wave wake can be considered as resonantly excited.
This means that the wake is calculated in a similar manner to the calculation of lee
waves behind an obstacle in an eastward uniform zonal flow on the β-plane. The
resulting lowest-order solution consists of an intense vortex and a low-amplitude wave
wake. The time evolution of this system of a vortex and its associated wave wake is
determined by solvability conditions for the next approximation. This approach was
applied by Flierl to investigate the dynamics of a strongly nonlinear warm eddy (Flierl
1984), by Korotaev & Fedotov (1994) to study a non-divergent intense monopole,
and by Flierl & Haines (1994) to explore the decay of an eastward moving dipole. A
similar approach was used by McDonald (1998) to investigate the decay of intense
cyclones by Rossby wave radiation.

Although these theories give qualitatively reasonable results, nevertheless there
remain some important unanswered questions. First, there is no evidence (numerical
or observational) that the wave field radiated by the vortex can be considered as quasi-
resonant. This is certainly not the case for the non-divergent barotropic monopole
since the meridional and zonal components of its translation speed are always of the
same order (e.g. Fiorino & Elsberry 1989; Reznik & Dewar 1994; Korotaev & Fedotov
1994). The divergent quasi-geostrophic monopole does tend to a quasi-stationary state
with predominantly zonal propagation but this state is a non-radiating one (see § 5
for more details).

Second, the quasi-resonant Rossby wave wake has infinite energy (see, for example,
equation (23) from Flierl 1984). This is of no great importance when considering
the flow around an obstacle, in which case the wake is terminated in fact by a
transient front, which propagates away from the obstacle with the appropriate group
velocity. Thus the infinite energy is a consequence of making a long-time quasi-steady
approximation in the frame of reference of the obstacle. But a vortex does not behave
like an obstacle in this respect: it loses energy when radiating Rossby waves and
therefore cannot possess an infinite-energy wave wake. In fact, the system of vortex
and waves conserves energy (unlike the flow around an obstacle) and hence at all
times the total energy is finite. Of course, if the Rossby wave wake is close to being
quasi-steady in the vicinity of the vortex then a quasi-steady solution can be sought
to describe the vortex motion, which is produced mainly by the near-field processes.
This would be possible, for example, if the vortex translation speed changes more
slowly than the wave wake. However, the vortex motion is produced by the near-field
part of the wave wake (β-gyres), and therefore the typical evolution times of the speed
and wave wake are comparable.

Third, none of the theories cited above provides conservation of energy and en-
strophy, which are particularly important for the second stage of the vortex develop-
ment.

The questions addressed in this work are the following ones:
What are the durations of the main stages of the vortex evolution?
What is the mechanism of the vortex deceleration?
What is the lifetime of the vortex imposed by the conservation of energy and

enstrophy?
Why does the ‘naive’ asymptotic solution which is the sum of the initial vortex and

the β-gyres describe so well the vortex evolution far beyond the formal time of this
solution’s applicability?
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Does any non-radiating state exist which the intense vortex tends to with increasing
time?

To focus in detail on the last four questions in particular, we consider the model of
an intense initial vortex with piecewise-constant relative vorticity, suggested by SF94.
The paper is organised as follows. Section 2 contains a general characterization of
the development stages of a quasi-geostrophic vortex on a β-plane. In § 3 we discuss
some integral laws which are useful for understanding general features of the vortex
evolution. The model of an intense divergent vortex with initially piecewise-constant
relative vorticity is described in § 4. Section 5 is concerned mainly with properties of
the β-gyres. The axisymmetric and quadrupole corrections important at later stages of
the vortex evolution are discussed in § 6. The mechanism of the vortex deceleration is
considered in § 7. The discussion of our results and concluding remarks are presented
in § 8.

2. Vortex evolution stages
The basic equation for the model under consideration is the well-known equation

for conservation of potential vorticity written in moving coordinates attached to the
vortex centre,

∂(∇2Ψ − R−2
d Ψ )

∂t
−U∂(∇2Ψ − R−2

d Ψ )

∂x
− V ∂(∇2Ψ − R−2

d Ψ )

∂y

+β
∂Ψ

∂x
+ J(Ψ,∇2Ψ ) = 0. (2.1)

Here Ψ is the streamfunction, U and V are the zonal and meridional translation
speeds respectively, x, y denote eastward and northward coordinates and t time; ∇2

and J are Laplacian and Jacobian operators, while Rd is the Rossby scale. The initial
state is assumed to be a localized axisymmetrical vortex, i.e.

Ψ (r, 0) = Ψ0(r). (2.2)

Let the initial vortex scale L be of the order of Rd and a typical orbital velocity
be Up. Then an appropriate non-dimensional version of the problem (2.1), (2.2) is
conveniently written as

∂

∂t
(∇2Ψ −Ψ ) + J(Ψ + αUy − αVx, ∇2Ψ −Ψ ) + α

∂Ψ

∂x
= 0. (2.3)

Here the advective time Ta = Rd/Up is used as a time scale and the vortex translational
speed scale Ut is determined from the balance between the second, third, and fourth
terms in (2.1) (physically, this balance means that the beta-effect forces the vortex to
move), i.e.

Ut = βR2
d (2.4)

(see also Reznik 1992; Reznik & Dewar 1994). The parameter α is equal to the ratio
between the characteristic vortex translation speed Ut and the typical orbital velocity
Up, i.e.

α =
βR2

d

Up

. (2.5)

The problem (2.3), (2.2) should be closed by a definition of the vortex centre, which
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is fixed in these coordinates; the translation speed depends on this definition (e.g.
Reznik & Dewar 1994).†

We can produce three different time scales using the parameters β,Up, L, namely

Ta =
Rd

Up

, Tw =
1

βRd
, Td =

Up

β2R3
d

. (2.6)

Only two of these scales are independent. Each of these scales has a clear physical
meaning. The ‘advective’ scale Ta is a typical time required for a fluid particle to move
a distance of the order of the vortex size. The ‘wave’ scale Tw is the typical time it
takes for the vortex to move a distance equal to its own size.

To understand the meaning of the scale Td we consider the law of potential vorticity
conservation,

Π = Q+ βy = const for a fluid particle, (2.7a)

Q = ∇2Ψ − R−2
d Ψ, (2.7b)

where Q is the relative vorticity. (Strictly speaking only the first term ∇2Ψ in Q is
the relative vorticity, the second term −R−2

d Ψ describes the vortex-tube stretching
due to free surface changes. The term ‘relative vorticity’ as applied to Q is used only
for brevity.) It readily follows from (2.7a) that the meridional drift Ly of the vortex
produces the relative vorticity change ∆Q = −βLy . Since Q = O(Up/Rd), one can
obtain that the quantity ∆Q becomes of the order of Q when

Ly = Ld =
Up

βRd
. (2.8)

The typical time taken to travel a distance Ld is equal to (see (2.4))

Ld

Ut

=
Up

β2R3
d

= Td. (2.9)

Thus the scale Td is a typical time required for the vortex relative vorticity change to
become of the order of the relative vorticity itself. It is natural to call Td the ‘distortion’
time. Note that the real distortion time of a divergent vortex can substantially exceed
Td since the vortex meridional translation speed is significantly smaller than βR2

d (see
below in § 5).

One can readily obtain that

Tw

Ta
=

1

α
,

Td

Ta
=

1

α2
, α =

βR2
d

Up

. (2.10)

The crucial importance of the parameter α follows from dimensional analysis of the
problem (2.1), (2.2), which is characterized by the dimensional parameters β, Rd, Up,
and L. Only two independent non-dimensional quantities can be produced using
these parameters. It is convenient to choose α = βR2

d/Up, δ = L/Rd. In the rigid
lid approximation Rd = ∞, δ = 0, and the problem is characterized by the single
parameter α (see e.g. Reznik & Dewar 1994; Llewellyn Smith 1997). For simplicity we
assume here that the initial vortex size is equal to the Rossby scale, so that L = Rd.
Then δ = 1 and the problem (2.1), (2.2) is again characterized only by α. Note
that the scales Ta, Tw, and Td are obtained independent of each other from physical

† We note that formally the coordinate system is of no importance since knowing the solution in
any coordinates we are able to calculate the track of any characteristic vortex point. However from
a physical point of view it is preferable to use the coordinates attached to the vortex.
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considerations and also that the fact that they are related by the simple relations
(2.10) illustrates the importance of the parameter α.

If the vortex has a moderate amplitude, i.e. α = O(1), then all three time scales
Ta, Tw, and Td are of the same order. Physically this means that the vortex rotation,
Rossby wave radiation, and the vorticity distortion proceed at the same rate, i.e. there
is no particular stage at which one of these processes dominates over the other ones.
That is why an analytical description of a moderate-amplitude vortex is an extremely
difficult problem.

Fortunately, real atmospheric and oceanic eddies are, as a rule, highly nonlinear;
their orbital velocities greatly exceed translation ones, and the parameter α is small,

α� 1. (2.11)

We proceed from the non-dimensional form (2.3) of the potential vorticity equation.
Then the solution for an intense vortex can be sought in the following asymptotic
form:

Ψ = Ψ0(r) + αΨ1(r, θ, t) + α2Ψ2(r, θ, t) + · · · , (2.12a)

Q = Q0(r) + αq1(r, θ, t) + α2q2(r, θ, t) + · · · , (2.12b)

where (r, θ) are polar coordinates with origin at the vortex centre. Expansions (2.12)
express the physical fact that the typical dimensional times (2.6) are well separated
under the condition (2.11),

Ta � Tw � Td, (2.13)

as follows from (2.10). The relationships (2.13) allow us to divide the intense vortex
evolution into different stages.

At the very early stage, t < 1 (in dimensional terms, t < Ta) the simple axisymmetric
rotation (the terms Ψ0(r), Q0(r) in (2.12)) dominates and the influence of the β-effect
can be neglected. At the second stage,

1 6 t 6 α−1, (2.14)

the β-gyres (terms αΨ1, αq1 in (2.12)) develop, producing the vortex motion along
some trajectory; the vortex evolution is described by the sum Ψ0(r) + αΨ1(r, θ, t) at
this stage. In dimensional terms, (2.14) is Ta 6 t < Tw . At the third stage,

α−1 6 t < α−2, (2.15)

the higher-order terms in (2.12) have to be taken into account. These terms produce a
decay of the initial axisymmetric state and contribute to a decrease of the translation
speed. In dimensional terms, (2.15) is Tw 6 t < Td. At the final fourth stage, t > α−2

(in dimensional terms, t > Td), the vortex distortion becomes strong and the asymp-
totic expansion (2.12) fails.

Thus one can expect that the asymptotic expansion (2.12) is applicable up to times

t < α−2, (2.16)

or in dimensional terms, t < Td. Of course the suggested scheme is a speculative
one in many respects, and one of the aims of the paper is to verify it using the
simplest possible model. Our main attention is focused on exploration of the poorly
understood stage (2.15).

In the above considerations we assume the vortex scale L to be of the order of the
Rossby scale Rd. One can readily generalize the estimations for Ta, Tw and Td to the
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cases of large (L > Rd), and small (L < Rd) vortices. For a large vortex we have

Ta =
L

Up

, Tw =
L

βR2
d

, Td =
Up

β2R3
d

L

Rd
, (2.17)

i.e. the distortion time for the large vortex increases as the vortex size L increases, and
exceeds the analogous time (2.9) for the vortex with L ≈ Rd. The analogous scales for
a small (non-divergent) vortex, which is of interest for atmospheric applications, can
be written as

Ta =
L

Up

, Tw =
1

βL
, Td =

Up

β2L3
. (2.18)

We see that, contrary to the preceding case, the distortion time of the non-divergent
vortex is very sensitive to the vortex size, decreasing proportionally to L3 with
increasing L. Obviously the difference between large and small eddies is related to
the fact that with increasing wavelength λ, the group velocity of divergent Rossby
waves decreases whereas the group velocity of non-divergent Rossby waves rapidly
increases (proportionally to λ2). In this paper, most attention is paid to the case of a
divergent vortex with a scale L of the order of Rd.

The distortion times (2.9), (2.17), and (2.18) can be written in the following ‘univer-
sal’ form:

Td =
Ψm

c2
g

, (2.19)

where Ψm is a typical vortex streamfunction amplitude (Ψm = UpL), and the typical
group velocity cg is equal to βR2

d and βL2 for the cases of finite and infinite Rossby
scale, respectively. Note that (2.19) can also be written as

cgTd =
UpL

cg
(2.20)

where the left-hand side is the distance moved by a Rossby wave in a time Td, while
the right-hand side is the product of Up (the typical orbital velocity) with the time
L/cg in which a Rossby wave propagates across the vortex.

3. Integral quantities
In this Section various integral quantities are presented which enable us to under-

stand some general properties of the long-term vortex evolution. Although all of them
are well-known we present them here for convenience, noting that some of them are
somewhat modified, being written in moving coordinates.

3.1. Energy and enstrophy conservation

Multiplying (2.3) by Ψ (Q = ∇2Ψ − Ψ ) and integrating throughout the plane we
obtain the energy (enstrophy) conservation law:∫

[(∇Ψ )2 +Ψ 2]dxdy −
∫
ΨQdxdy = E0 = const, (3.1)∫

Q2dxdy = N0 = const. (3.2)

Substitution of (2.12) into (3.1), (3.2) gives the equations, at different powers of α,

−
∫
Ψ0Q0 dxdy = E0,

∫
Q2

0 dxdy = N0, (3.3a, b)
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(Ψ0q1 +Ψ1Q0)dxdy = 0,

∫
Q0q1dxdy = 0, (3.4a, b)∫

(Ψ2Q0 +Ψ0q2)dxdy+

∫
Ψ1q1dxdy = 0, 2

∫
Q0q2dxdy+

∫
q2

1dxdy = 0. (3.5a, b)

Equations (3.3a, b) are trivial and (3.4a, b) are satisfied identically since Ψ1 (β-gyres)
always has the form

Ψ1 = As1(r, t) sin θ + Ac1(r, t) cos θ. (3.6)

The most useful equations are (3.5a) and (3.5b) relating the β-gyre energy and
enstrophy (the second integrals in (3.5a, b), respectively) to the energy and enstrophy
changes of the axisymmetric vortex component (first integrals in (3.5a, b) respectively).
This enables one to calculate the energy and enstrophy lost by the initial vortex using
only the beta-gyre correction Ψ1, without solving the much more complicated problem
for the correction Ψ2.

3.2. Moment equations

Integrating (2.3) throughout the plane we obtain the equation∫
Ψdxdy = −

∫
Qdxdy = M0 = const, (3.7)

which can be interpreted as angular momentum conservation.
Multiplication of (2.3) by (x, y) along with the subsequent integration gives the

equations for the vortex centroid velocities:

d

dt

∫
xΨdxdy = −α(U + 1)

∫
Ψdxdy,

d

dt

∫
yΨdxdy = −αV

∫
Ψdxdy. (3.8a, b)

Note that in fixed coordinates the centroid velocity coincides with the drift velocity
(−1, 0). It readily follows from (3.8a, b), (3.7) that the centroid location is defined as
follows: ∫

xΨdxdy = −αM0X̄(t),

∫
yΨdxdy = −αM0Ȳ (t), (3.9a, b)

where

X̄(t) =

∫ 1

0

(U + 1)dt, Ȳ (t) =

∫ 1

0

Vdt (3.10)

are the zonal and meridional vortex displacements in coordinates moving with the
drift velocity (−1, 0).

To derive equations for the second moments we multiply (2.3) by (x2, y2, xy) and
integrate the resulting equation. After some algebra we have

WΨ =

∫
(x2 + y2)(Ψ −Ψ0)dxdy = α2M0(X̄

2 + Ȳ 2), (3.11a)

or, in alternative form,

WQ =

∫
(x2 + y2)(Q− Q0)dxdy = −α2M0(X̄

2 + Ȳ 2). (3.11b)

Here Q0 = ∇2Ψ0 −Ψ0 is the initial relative vorticity.
Other equations for the second moments are written as

d

dt

[∫
xyΨdxdy − α2M0X̄ Ȳ

]
=

∫ [(
∂Ψ

∂x

)2

−
(
∂Ψ

∂y

)2
]

dxdy, (3.12a)
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d

dt

[∫
(x2 − y2)Ψdxdy − α2M0(X̄

2 − Ȳ 2)

]
= −4

∫
∂Ψ

∂x

∂Ψ

∂y
dxdy. (3.12b)

Equations (3.12a, b) were used to control our numerical calculations. We emphasize
that all formulae of this Section (excluding, of course, (3.3) to (3.5)) are exact and do
not depend on the magnitude of α.

4. Intense vortex with initially piecewise-constant relative vorticity
We proceed from the non-dimensional form (2.3) of the equations. Let the initial

relative vorticity be

Q0 = ∇2Ψ0 −Ψ0 = H(1− r), (4.1)

where H(z) is the Heaviside function: H(z) = 1 if z > 0 and H(z) = 0 if z < 0. The
potential vorticity Π = Q+ αy is equal to, at t = 0,

Π = Π0 = H(1− r) + αy. (4.2)

By the conservation of potential vorticity the discontinuity in the right-hand side of
(4.2) is conserved in time, i.e. the potential vorticity can be represented as

Π = Q+ αy (4.3a)

where the relative vorticity

Q = ∇2Ψ −Ψ = H(rb − r) + αq(x, y, t). (4.3b)

Here q(x, y, t) is a continuous function and the patch boundary depends on θ and t
so that

rb = rb(θ, t). (4.4)

Substituting (4.3a, b), (4.4) into (2.3) and equating to zero the singular and regular
parts in the resulting equation we obtain

∂q

∂t
+
∂Ψ

∂θ
+ J(Ψ ∗, q) = 0, (4.5a)

∂rb

∂t
+

1

rb

∂Ψ ∗

∂r

∣∣∣∣
b

∂rb

∂θ
+

1

rb

∂Ψ ∗

∂θ

∣∣∣∣
b

= 0, (4.5b)

where

Ψ ∗ = Ψ + α(Uy − Vx), (4.5c)

and a|b = a(rb, θ, t). The third equation is (4.3b) and relates the streamfunction Ψ to
the relative vorticity. The initial conditions are that

Ψ (r, θ, 0) = Ψ0(r), ∇2Ψ0 −Ψ0 = H(1− r), (4.6a)

q(r, θ, 0) = 0, (4.6b)

and

rb(θ, 0) = 1. (4.6c)

To close the problem we have to define a method to calculate the translation speed
U = (U,V ). The simplest way is to trace the centroid of the vortex patch S† bounded

† It does not coincide with the vortex centroid, the location of which is determined by (3.8), (3.9).
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by the curve r = rb(θ, t). The centroid location (xc, yc) is given by the equations

xc =

∫
S

xdxdy∫
S

dxdy

, yc =

∫
S

ydxdy∫
S

dxdy

, (4.7)

which in polar coordinates take the form

xc =
1

3S0

∫ 2π

0

r3
b(θ, t) cos θdθ, yc =

1

3S0

∫ 2π

0

r3
b(θ, t) sin θdθ. (4.8)

Here

S0 =

∫
S

dxdy =
1

2

∫ 2π

0

r2
b(θ, t)dθ = constant (4.9)

is the area of the patch S . Conservation of S0 readily follows from (4.5b) rewritten as

∂

∂t

(
r2
b

2

)
+

∂

∂θ
{Ψ ∗[rb(θ), θ]} = 0. (4.10)

In moving coordinates attached to the centroid xc = yc = 0, i.e. by (4.8) we have the
equations ∫ 2π

0

r3
b(θ, t) cos θdθ = 0,

∫ 2π

b

r3
b(θ, t) sin θdθ = 0 (4.11)

which close the problem (4.5), (4.6).
In the limit (2.11) of an intense vortex the solution is sought in the form (2.12);

that is,

Ψ = Ψ0(r) + αΨ1(r, θ, t) + · · · , (4.12a)

q = q1(r, θ, t) + αq2(r, θ, t) + · · · , (4.12b)

rb = 1 + αr̄1(θ, t) + α2r̄2(θ, t) + · · · , (4.12c)

(U,V ) = (U0, V0) + α(U1, V1) + · · · . (4.12d)

When solving (4.5) we demand that Ψ,∇Ψ are continuous on the curve r = rb(θ, t)
to provide the continuity of the pressure and velocity field.

The model under consideration was suggested by Sutyrin & Flierl (1994) in a
somewhat different form. The exceptions are the important equations (4.11) which
allow us to examine analytically higher-order terms in the expansions (4.12a–d) (the
first-order quantities were found in Sutyrin & Flierl 1994) which are of importance
at later stages of the vortex evolution. It may appear that this model is much more
complicated than the original problem (2.1), (2.2) but this is not the case. The great
simplification is that equation (4.5a) for the vorticity perturbation q does not contain
the advection of the lowest-order vorticity H(rb−r); the advection is described instead
by equation (4.5b).

5. The lowest-order solution and β-gyres
Substitution of (4.12a–d) into (4.3b), (4.5a, b) and (4.6) gives, at the lowest order,

∇2Ψ0 −Ψ0 = H(1− r), (5.1a)

[Ψ0] =

[
∂Ψ0

∂r

]
= 0, (5.1b)
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Figure 1. Radial profiles of the initial streamfunction Ψ0(r) (solid) and the angular velocity
Ω̄(r) = (1/r) dΨ0/dr (dashed).

∂q1

∂t
+ Ω̄(r)

∂q1

∂θ
+ rΩ̄(r) cos θ = 0, (5.1c)

q1(r, θ, 0) = 0. (5.1d)

Here Ω̄(r) is the angular velocity of the initial vortex, that is

Ω̄(r) =
1

r

∂Ψ0

∂r
, (5.2)

and the notation [a] = a(1− 0, θ, t)− a(1 + 0, θ, t) is used.
The initial streamfunction Ψ0(r) and Ω̄(r) have the form

Ψ0 =

{−1 +K1(1)I0(r), r 6 1

−I1(1)K0(r), r > 1,
(5.3)

Ω̄(r) =
1

r

{
K1(1)I1(r), r 6 1

I1(1)K1(r), r > 1,
(5.4)

where Kn(r), In(r) are the modified Bessel functions of order n. The profiles of Ψ0(r)
and Ω̄(r) are shown in figure 1.

The vorticity correction q1 is readily obtained from (5.1c) and has the dipolar form

q1 = q1s sin θ + q1c cos θ, (5.5a)

where

Q1 = q1s + iq1c = −r(1− exp (−iΩ̄t)). (5.5b)

For the first-order quantities we have

∇2Ψ1 −Ψ1 = q1(r, θ, t), (5.6a)

[Ψ1] = 0,

[
∂Ψ1

∂r

]
= −r̄1(θ, t), (5.6b)
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∂r̄1

∂t
+ Ω̄(1)

∂r̄1

∂θ
+
∂Ψ1(1, θ, t)

∂θ
+U0 cos θ + V0 sin θ = 0, (5.6c)∫ 2π

0

r̄1(θ, t) exp (iθ)dθ = 0, (5.6d)

∂q2

∂t
+ Ω̄(r)

∂q2

∂θ
= −J(Ψ1 +U0y − V0x, q1)− ∂Ψ1

∂x
. (5.6e)

Note that the discontinuities at r = 1 (see (5.6b) and analogous equations below) arise
when writing at the non-perturbed patch boundary r = 1 the continuity condition of
Ψ , ∇Ψ at r = rb(θ, t).

The problem (5.6a–d) is solved by decomposition into a Fourier series in θ. As a
result we have

r̄1(θ, t) = 0, (5.7a)

Ψ1 = As1(r, t) sin θ + Ac1(r, t) cos θ, (5.7b)

∂Ψ1(1, θ, t)

∂θ
+U0 cos θ + V0 sin θ = 0, (5.7c)

where

A = As1 + iAc1 = −I1(r)

∫ ∞
r

ξQ1K1(ξ)dξ −K1(r)

∫ r

0

ξQ1I1(ξ)dξ, (5.8)

and Q1 is given by (5.5b). The translation speed components U0, V0 are obtained from
(5.7c) and can be written as

U0+iV0 = −A∗(1, t) = −1+I1(1)

∫ ∞
1

ξ2K1(ξ) exp (iΩ̄t)dξ+K1(1)

∫ 1

0

ξ2I1(ξ) exp (iΩ̄t)dξ.

(5.9)
Thus this lowest-order approximation describes the developing β-gyres (the function

Ψ1 in (5.7b)) advecting the vortex northwestward (see figures 2, 3) with the translation
speed U = (U0, V0) given by (5.9); the vortex patch shape remains unchanged. The
solution (5.5a, b), (5.7a–c), (5.9) was derived in Sutyrin & Flierl (1994) (with slightly
different notation).† Here we consider some important properties of the beta-gyres
Ψ1 which were not analysed in Sutyrin & Flierl (1994).

Figure 2 shows a typical development of the beta-gyres gradually amplifying and
expanding, with a broadening large-scale approximately rectilinear flow forming in
the central region. The β-gyre magnitude increases very slowly with increasing time as
can be seen in figure 2. The asymptotic behaviour of A for u = Ω̄(r)t fixed, t→∞, is

A = ln t̃[1 + F(u)] + O(1), (5.10a)

F(u) = −u
2

∫ ∞
u

e−iv

v2
dv − i

e−iu − 1

2u
, (5.10b)

where t̃ = I1(1)t (see the Appendix).
The central flow advecting the vortex along the dipole axis appears to be practically

uniform in some region near the vortex centre as readily follows from the behaviour
of the residual flow Ψres,Ψres

Ψres = Ψ1+U0y−V0x = [As1(r, t)−rAs1(1, t)] sin θ+[Ac1(r, t)−rAc1(1, t)] cos θ, (5.11a)

† When comparing our results with Sutyrin & Flierl one should keep in mind that their
non-dimensional time differs from ours, our T = 100 corresponds to their T = 35.
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Figure 2. Development of the primary β-gyres.

shown in figure 4. It is clearly seen that Ψres practically vanishes in some region
r < rres(t) centred at the vortex centre, i.e.

Ψres = Ψ1 +U0y − V0x ≈ 0, r < rres(t). (5.11b)

The size (somewhat arbitrary) rres(t) of this region monotonically increases with
increasing time: rres(50) ≈ 1, rres(100) ≈ 2. So, as time passes, the region becomes
larger than the vortex patch.

This feature can be explained using the asymptotics of Ψ1, U0, V0 for large times.
For r fixed, and t large, we have

A = r + I1(r)G(t) + O(1/t), (5.12a)

ReG(t) = −3π

2

ln2 t̃

t̃
+ O(ln t̃/̃t), (5.12b)

Im G(t) =
ln3 t̃

t̃
+

3C ln2 t̃

t
+ O(ln t̃/̃t), (5.12c)

and

U0 − iV0 = −A(1, t) = −1 + I1(1)G(t) + O(1/t), (5.13)
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Figure 3. The lowest-order translation speed components: (a) zonal component U0, (b) meridional
component V0. The oscillations of the speed in time are produced by the integral over the vortex
patch region (the last term in (5.9)). The components U0, V0 (bold lines with stars) are decomposed
into parts due to the last term (dashed lines), and the first two terms (thin solid lines) in (5.9).
Almost solid-body rotation of the main vortex inside the vortex patch (see figure 1) results in a very
slow decay of the oscillations in time.

where C is the Euler constant and we recall that t̃ = I1(1)t. By virtue of (5.12) and
(5.7b) we now see that Ψ1 → r sin θ in the region r = O(1), U0 → −1 and V0 → 0
with increasing time. Therefore, the residual flow Ψres → 0 in the region r = O(1),
which gradually expands with time. In accordance with (5.12b, c) this tendency is
rather slow, much slower than that seen in figure 4. However, numerical calculations
show that the asymptotics for (5.12b, c) are applicable only for very large times and
the function G decreases much more rapidly than in (5.12) with increasing time for
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Figure 4. Radial profiles of the coefficients in (5.11a): (a) the coefficient As1(r, t)− rAs1(1, t);
(b) the coefficient Ac1(r, t)− rAc1(1, t).

t < 200. In addition, one can write in the region r = O(1),

A(r, t)− rA(1, t) = [I1(r)− rI1(1)]G(t) + O(1/t).

In practice, the difference I1(r)− rI1(1) is small for r in the range 0 < r < 2 and this
also greatly contributes to the rapid residual flow decay in this region for moderate
times (t > 10) as shown in figure 4. Note that the smallness of the residual flow
Ψ1 + U0y − V0x in the main vortex region is observed in practice in all numerical
experiments with localized vortices (e.g. Fiorino & Elsberry 1989).

The smallness of the residual flow is of great importance for understanding of the
long-term vortex evolution because it has significant implications for the range of
time over which the expansions (4.12) remain a good approximation to the solution.
To show that, we consider the remainder arising when substituting the approximate
solution Ψ0 + αΨ1 into the basic equation (2.3). The main part of this remainder is
equal to the right-hand side of equation (5.6e) multiplied by α2. The most ‘dangerous’
part of this remainder is the Jacobian containing the spatial derivatives of q1 growing
proportionally to t with increasing t (see (5.5)) and therefore one would expect a
rapid growth of the remainder with time, resulting in a rapid loss of validity of the
expansions (4.12). Instead, using (5.12), (5.5) one can show that formally the remainder
grows proportionally to ln3 t for large t. However, due to the exponential decay of
Ψ0 and, therefore, of q1, the region of rapid growth is concentrated near the vortex
centre where the growth is compensated by the smallness of Ψres in the Jacobian.
This effect, together with the slow time growth of Ψ1, results in a very slow increase
of the right-hand side of (5.6e) with increasing time. Our calculations show that the
right-hand side does not exceed 1.5 for t = 100. The boundedness of this remainder
means that the approximate solution Ψ0 + αΨ1 can be a good approximation for
many turnaround times exceeding the wave time Tw . This conclusion is confirmed by
numerical experiments performed for various initial vortices in divergent (Sutyrin et
al. 1994, their figure 4) and non-divergent (Reznik & Dewar 1994, their figures 1 to 3)
models. Obviously, the behaviour of the right-hand side of (5.6e) retards the growth
of the second vorticity correction q2, which also contributes to a greater ‘longevity’ of
the expansions (4.12). For analogous reasons the next-order remainder also does not
grow catastrophically with increasing time (see the end of § 7).
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It follows from (5.7b), (5.12), and (5.13) that locally the approximate solution
Ψ0 + αΨ1 tends to

Ψ̄∞ = Ψ0

(√
(x+ αt)2 + y2

)
+ αy as t→∞. (5.14)

The state Ψ̃∞ is an exact solution to the equation (2.3) (with U = V = 0) for an
arbitrary axisymmetric function Ψ0(r). One can say that the transformation (5.14)
‘kills’ the β-effect, which is why an arbitrary axisymmetric vortex moving with the
drift velocity on the background of a uniform zonal flow with the same velocity does
not radiate any Rossby waves. The tendency of the solution to the state (5.14) can
be considered as an interesting example of a transient nonlinear self-organization
when the nonlinearity and near-field radiated Rossby waves (the β-gyres) create the
tendency for the vortex to adopt a non-radiating state and in doing so retard the
vortex decline. Of course, this tendency holds only when the vortex is sufficiently
strong.

6. The axisymmetric and quadrupole corrections
Taking into account (5.7a) the second-order approximation is described as follows:

∇2Ψ2 −Ψ2 = q2(r, θ, t), (6.1a)

[Ψ2] = 0,

[
∂Ψ2

∂r

]
= −r̄2(θ, t), (6.1b)

∂r̄2

∂t
+ Ω̄(1)

∂r̄2

∂θ
+
∂Ψ2(1, θ, t)

∂θ
+U1 cos θ + V1 sin θ = 0, (6.1c)∫ 2π

0

r̄2(θ, t) exp (iθ)dθ = 0, (6.1d)

∂q3

∂t
+ Ω̄(r)

∂q3

∂θ
= −J(Ψ1 +U0y − V0x, q2)− J(Ψ2 +U1y − V1x, q1)− ∂Ψ2

∂x
. (6.1e)

As can be seen from (5.6e) the β-gyres self-interaction, β-effect, and advection of
q1 induce an axisymmetric and quadrupole components in the vorticity field, i.e. q2

has the form,

q2 = q20(r, t) + q2s(r, t) sin 2θ + q2c(r, t) cos 2θ. (6.2)

Here

q20 = Im

∫ t

0

1

2r
(Ā∗Q̄1)

′dt−
∫ t

0

V0dt, (6.3a)

q2s + iq2c =
1

2r
e−2iΩ̄t

∫ t

0

(
ĀQ̄′1 − Ā′Q̄1

)
e2iΩ̄tdt, (6.3b)

Ā = Ās1 + iĀc1 = A(r, t)− rA(1, t), (6.3c)

Q̄1 = q̄1s + iq̄1c = re−iΩ̄t, (6.3d)

where the prime denotes differentiation with respect to r. The streamfunction Ψ2

and the patch boundary disturbance r̄2 are obtained from (6.1a) to (6.1d) using a
decomposition into Fourier series and can be written as

Ψ2 = B20(r, t) + B̄2s(r, t) sin 2θ + B̄2c(r, t) cos 2θ, (6.4a)
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r̄2(θ, t) = r
(2)
2s (t) sin 2θ + r

(2)
2c (t) cos 2θ, (6.4b)

where

B20(r, t) = −I0(r)

∫ ∞
r

rK0(r)q20dr −K0(r)

∫ r

0

rI0(r)q20dr, (6.5a)

B̄2 = B̄2s + iB̄2c = B2 − R(2)
2 (t)Φ(r), (6.5b)

B2(r, t) = −I2(r)

∫ ∞
r

rK2(r)(q2s + iq2c)dr −K2(r)

∫ r

0

rI2(r)(q2s + iq2c)dr, (6.5c)

R
(2)
2 (t) = r

(2)
2s + ir(2)

2c = −2ieiωt

∫ t

0

B2(1, t)e
iωtdt, (6.5d)

ω = 2
[
Ω̄(1)− Φ2(1)

]
, Φ2(r) =

{
K2(1)I2(r), r < 1

I2(1)K2(r), r > 1.
(6.5e)

Since neither Ψ2 nor r̄2 contain cos θ, sin θ we have from (6.1c),

U1 = V1 = 0, (6.6)

i.e. the translation velocity remains unchanged at this order.
The time evolution of the axisymmetric correction q20 is shown in figure 5. In

accordance with potential vorticity conservation (2.7a) q20 is negative in a region
around the vortex centre. As the vortex travels along the meridian this region becomes
wider and ‘deeper’ giving rise to a broadening annulus in the field Q0 + α2q20 with
vorticity opposite in sign to the main vortex. The vorticity in the annulus has a fine
structure, clearly seen in figure 5, with scale decreasing with increasing time because of
the relatively rapid differential rotation in the main vortex for the range 1 6 r 6 2 (see
figure 1). One can expect that such a structure exists only in the absence of friction,
which if included in the model would result in homogenization of the vorticity inside
the annulus.

The formation of an annulus with oppositely signed vorticity was qualitatively pre-
dicted by Korotaev (e.g. Korotaev 1988) and demonstrated in numerical experiments
(Sutyrin et al. 1994; Korotaev & Fedotov 1994). Somewhat more surprising is that
this annulus is not alone; it is followed by two broadening annulae with alternating
signs. We emphasize also that q20 is of the same sign as Q0 at the vortex periphery,
i.e. the angle-averaged relative vorticity increases with increasing time far from the
vortex centre. It is important to note that the behaviour of q20 is qualitatively the
same as the behaviour of the azimuthally averaged perturbation vorticity in the case
of a non-divergent vortex examined numerically by Smith, Weber & Kraus (1995, see
figure 2 of their paper). Therefore one might expect that these features are typical for
vortex evolution on a β-plane.

The general features of the vorticity evolution described above are in a full agree-
ment with the conservation laws (3.7), (3.11b). By virtue of (3.7) the integral WQ

in (3.11b) is always opposite in sign to the total angular momentum, i.e. is positive
(negative) for a cyclone (anticyclone). The main contribution to WQ is from the vortex
periphery because of the multiplier r2 in the integrand. Therefore the difference Q−Q0

is, on average, positive for a cyclone and negative for an anticyclone on the vortex
periphery, i.e. the vortex periphery always intensifies. On the other hand we have
from (3.7) that ∫

(Q− Q0)dxdy = 0, (6.7)
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Figure 6. The non-dimensional energy and enstrophy (divided by α2π) gained by the beta-gyres

and lost by the axisymmetric component.

whence it follows that for a cyclone (anticyclone) the positive (negative) difference
Q − Q0 on the vortex periphery has to be compensated by the negative (positive)
difference Q−Q0 in a central region. Thus the localized vortex weakens in the central
region and intensifies at the periphery, i.e. it gradually broadens and ‘flattens’. The
integral WQ in (3.11b), which can be considered as a measure of this flattening, is
directly proportional to the squared distance travelled by the vortex in a frame moving
with the drift velocity (−1, 0). It readily follows from (5.12b, c), (5.13) that for the
present case of an intense vortex the right-hand side of (3.11b) is dominated by the
meridional displacement Ȳ at large times,

WQ = O(ln6 t), t� 1. (6.8)

At the same time in the linear case (i.e. when the nonlinear terms in (2.1) are
omitted) the meridional speed of a linear vortex is equal to zero and the zonal
speed is about 30% of the drift speed of −1 (Flierl 1977). Correspondingly, in the
linear case, the integral WQ grows proportionally to t2, i.e. much faster than for the
intense vortex. Thus a linear vortex expands much faster than a strongly nonlinear
one which clearly demonstrates the ‘self-binding’ effect revealed in the numerical
experiments by (McWilliams & Flierl 1979; Smith & Reid 1982; Horton 1989).
The axisymmetric streamfunction correction B20 is much smoother than q20 and is
approximately opposite in sign (see figure 5 and (3.11a)). Otherwise the behaviour of
these fields is very similar to each other.

Knowing B20, q20 one can check that the conservation laws (3.5a, b) are obeyed by
the asymptotic solution (see figure 6). The total energy Eax and enstrophy Nax of the
axisymmetric component are given by the equations

Eax = E0 − α2Eβ(t), (6.9)

Nax = N0 − α2Nβ(t), (6.10)

where

Eβ(t) = −
∫
Ψ1q1dxdy = −π

∫ ∞
0

r(As1q1s + Ac1q1c)dr, (6.11)

Nβ(t) = π

∫ ∞
0

r|Q1|2dr (6.12)
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are the energy and enstrophy of the β-gyres, and E0, N0 are the total energy and
enstrophy,

E0 = −
∫
Ψ0Q0dxdy = −2π

∫ 1

0

rΨ0dr = 2π[ 1
2
−K1(1)I1(1)] ≈ 0.16× 2π, (6.13a)

N0 =

∫
Q2

0dxdy = π. (6.13b)

Surprisingly, the time dependences of Eβ(t), Nβ(t) are remarkably well approximated
by straight lines despite the rather complicated behaviour of the functions Ψ1, q1 (see
figure 6). With a good accuracy the functions α2Eβ(t), α2Nβ(t) can be represented as

α2Eβ(t) = 2π× 0.1α2t = 0.2π
t∗

Td
, (6.14)

α2Nβ(t) = 0.45π
t∗

Td
, (6.15)

where t* is the dimensional time, Td is the distortion time. One can define the
typical lifetime tElf (tNlf) of the vortex as a time when the energy (enstrophy) of the
axisymmetric component becomes equal to the energy of β-gyres, i.e.

Eax = α2Eβ = 1
2
E0 (Nax = α2Nβ = 1

2
N0). (6.16)

Taking into account (6.13a, b) we have that

tElf = 0.8Td (tNlf = 1.1Td). (6.17)

These estimates are close to the distortion time Td, thus confirming the self-consistency
of our theory since the estimates for the lifetimes tElf , t

N
lf and the estimate for the

distortion time Td are obtained in very different ways. At the same time the ‘enstrophy’
lifetime tNlf slightly exceeds the ‘energy’ lifetime tElf . Physically it means that the
vortex vorticity field distorts somewhat slower than the vortex velocity field, which
is dominated by larger space scales and therefore is distorted faster by Rossby wave
radiation. This effect was clearly seen in numerical experiments with a non-divergent
vortex by Reznik & Dewar (1994): the relative vorticity extremum value decreased
significantly slower than the streamfunction extremum value. One might expect that
an analogous effect takes place for the divergent model.

For typical oceanic parameters in midlatitudes β = 2× 10−13 cm−1 s−1, Rd = 45 km
and the drift velocity βR2

d ≈ 4 cm s−1. The typical maximum swirl velocity in mid-
oceanic eddies Up = 20 cm s−1 which corresponds here to α = 0.4βR2

d/Up = 0.08.†
Thus we have the following estimate for the ‘energy’ lifetime of mid-oceanic eddies,

tmolf ≈ 130 days. (6.18)

For rings with typical swirl velocity 1 m s−1,

trlf ≈ 650 days. (6.19)

Although rather crude (the energy losses caused by the higher azimuthal harmonics
are not taken into account) the estimates (6.18), (6.19) are very reasonable and

† The non-dimensional maximum orbital velocity in our model is equal to 0.4 (see figure 1).
Thus to fit the model vortex to a vortex with maximum orbital velocity Up one should choose the
parameter α in our model equal to α = 0.4βR2

d/Up.
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suggest that the energy transfer from the axisymmetric component to the β-gyres
plays a substantial role in the vortex decay.

The time evolution of the second-order correction fields (6.2), (6.4a) is shown in
figures 7 and 8. At the initial stage (t = 10) the streamfunction Ψ2 looks like a
tripole consisting of a distorted and elongated central anticyclone, and two weaker
side cyclones. With time the distortion gradually grows due to the differential (fast in
the central region and slow in the periphery) counterclockwise rotation of the main
vortex. The structure that develops consists of a strong, practically axisymmetric
central vortex surrounded by four weaker azimuthally elongated vortex satellites
with alternating signs. The system expands and intensifies with increasing time, the
satellite centres gradually migrating radially outward rather than rotating around
the main vortex centre. Comparing figure 7(a) with figures 5(b), 8 one can readily
see that the axisymmetric component B20, and the harmonics sin 2θ and cos 2θ in
(6.4a) are responsible for the central vortex and the satellite cyclones and anticyclones
respectively. An important feature of this structure is that the quadrupole component
B̄2s sin 2θ + B̄2c cos 2θ is very weak in the central region where the axisymmetric
component B20 is mainly confined (figures 5b, 8). The evolution of vorticity q2 is quite
similar to that of Ψ2 (see figure 7b), except that much stronger gradients develop in
the vorticity field.

All these features can be easily understood if one represents (5.6e) in the form

∂q2

∂t
+ Ω̄(r)

∂q2

∂θ
= −J(Ψ1 +U0y − V0x, q1 + y)− V0. (6.20)

By virtue of (5.11b) the residual streamfunction Ψres = Ψ1 + U0y − V0x is very
small in the central region and the right-hand side of (6.20) is dominated here by
the term −V0 which contributes, obviously, to the development of an anticyclonic
axisymmetric vortex (see figures 5a, b). In turn, the quadrupole part of the right-hand
side is confined mainly to the vortex periphery characterized by a slow rotation rate,
with the result that the vortex-satellite centres are practically immovable.

Since the extrema of the quadrupole harmonic amplitudes B2s and B2c are located
at r > 1 the function B2(1, t) determining the patch shape distortion in (6.5d) is
small: |B2(1, t)| does not exceed 2.5 for t 6 100. Correspondingly, the correction term

α2(r(2)
2s sin 2θ + r

(2)
2c cos 2θ) is non-zero at this order, but remains small.

7. The secondary β-gyres and translation speed correction
To determine the first non-zero correction U2, V2 to the translation speed we have

to calculate the third-order fields. The equations for this approximation, being rather
cumbersome in their full form, are greatly simplified by the relationships (5.7a), (6.6)
and can be written as follows:

∇2Ψ3 −Ψ3 = q3(r, θ, t), (7.1a)

[Ψ3] = 0,

[
∂Ψ3

∂r

]
= −r̄3(θ, t), (7.1b)

∂r̄3

∂t
+ Ω̄(1)

∂r̄3

∂θ
+

∂

∂θ

[
r̄2
∂Ψres(1, θ, t)

∂r
+Ψ3(1, θ, t)

]
+U2 cos θ + V2 sin θ = 0, (7.1c)∫ 2π

0

r̄3(θ, t) exp (iθ)dθ = 0. (7.1d)
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Figure 7(a). For caption see facing page.

The vorticity correction q3 is obtained from (6.1e) and has the form

q3 = n1s sin θ + n1c cos θ + n3s sin 3θ + n3c cos 3θ, (7.2a)

n1 = n1s + in1c = e−iΩ̄t

∫ t

0

meiΩ̄tdt, (7.2b)

m = mqdr + max, (7.2c)

mqdr =
1

2r
[2(q2s + iq2c)Ā

∗′ + (q2s + iq2c)
′Ā∗ − 2B̄2Q̄

∗′
1 − B̄′2Q̄∗1], (7.2d)

max =
i

r

(
q′20Ā− B′20Q̄1

)
. (7.2e)

Here mqdr and max denote the contributions to the function m from the quadrupole
and axisymmetrical components, respectively. Knowing q3 one can find Ψ3, r3, and
U2, V2 from (7.1a) to (7.1d). However the quantities U2, V2 which we are mainly
interested in can be calculated in a simpler way.
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Figure 7. Time evolution of the second-order correction fields: (a) streamfunction Ψ2(r, θ, t);
(b) relative vorticity q2(r, θ, t).

Let us represent the streamfunction Ψ3 as a sum

Ψ3 = Ψq3 +ΨH3, (7.3)

where Ψq3 and ΨH3 satisfy the equations

∇2Ψq3 −Ψq3 = q3, [Ψq3] =

[
∂Ψq3

∂r

]
= 0, (7.4)

∇2ΨH3 −ΨH3 = 0, [ΨH3] = 0,

[
∂ΨH3

∂r

]
= −r̄3. (7.5)

The solution to (7.4) is given by the equations

Ψq3 = b̄1s sin θ + b̄1c cos θ + b̄3s sin 3θ + b̄3c cos 3θ, (7.6a)

b̄1(r, t) = b̄1s + ib̄1c = −I1(r)

∫ ∞
r

rn1K1(r)dr −K1(r)

∫ r

0

rn1I1(r)dr. (7.6b)

By virtue of (7.1d) the harmonics sin θ, cos θ are absent from r3 and, according to
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(7.5), also from ΨH3. Therefore using (7.6a, b), (5.7b), (6.4b) we have from (7.1c)

U2 − iV2 = − i

2
R

(2)
2 Ā

∗′
(1, t)− b̄1(1, t), (7.7a)

b̄1(1, t) = −I1(1)

∫ ∞
1

rn1K1(r)dr −K1(1)

∫ 1

0

rn1I1(r)dr. (7.7b)

On the right-hand side of (7.7a) the first term is caused by the vortex patch distortion
and the second term results from the dipole part of the streamfunction Ψ3. The
magnitude of r̄2 is small and the first term is found to be more than one order of
magnitude smaller than the second. Thus we come to the conclusion that both the
lowest-order translation speed U0 + iV0 and the correction U2 + iV2 are determined by
the dipolar part of the field. In what follows the streamfunction Ψ1 and the dipolar
part of Ψ3 will be referred to as the primary and the secondary β-gyres respectively.

The plots of U2, V2 as a function of t (figure 9a) reveal the strong variability of these
quantities in time, both corrections U2 and V2 being predominantly positive. It means
that the secondary β-gyres decelerate the vortex in the zonal direction and accelerate
it in the meridional one. At the same time the modulus of the total translation speed
|U 0 + α2U 2| is, on average, smaller than |U 0| (see figure 9b).

These effects, the meridional acceleration of the vortex along with its total deceler-
ation, are clearly seen in figure 10 comparing the lowest-order and corrected tracks.
Figure 10 is in a good qualitative agreement with analogous figure 4 of Sutyrin et
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Figure 10. The vortex trajectories: TR0 – the trajectory related to U 0; TRTOT – the corrected
trajectory related to U 0 + α2U 2; α = 0.08.

al. (1994) which represents the lowest-order track produced by the primary β-gyres
and the real vortex trajectories calculated numerically. However, Gaussian initial vor-
tices were used in their paper; therefore one can hope that the effects described are
common features of vortex dynamics on the β-plane.

Similarly to the case of U0, V0 (see figure 3 and its caption) the oscillatory behaviour
of U2, V2 is related to the second term in the right-hand side of (7.7b) proportional to
the integral over the vortex patch region. This is readily revealed when decomposing
U2, V2 into the progressive (U2p, V2p) and the oscillatory (U2os, V2os) parts:

U2 = U2P +U2os, V2 = V2P + V2os, (7.8)

which result from the first and the second terms on the right-hand side of (7.7b)
respectively. Figure 11 shows that only the component (U2p, V2p) makes a sign-definite
contribution to the vortex track.

The evolution of the secondary β-gyres b̄1s sin θ + b̄1c cos θ is shown in figure 12.
At the initial stage the gyres look like a dipole approximately opposite in sign to the
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second-order correction field. The oscillatory part is removed from the contribution due to the
axisymmetric component.

primary β-gyres (compare figures 2 and 12 for t = 10). Also, like the primary β-gyres
the magnitudes of the dipole vortices gradually grow in time and their centres migrate
outward, along with a slow counterclockwise rotation decreasing as the centres move
away from the main vortex centre. A new feature is that the vortex shapes change
strongly in time; they elongate in the azimuthal direction bordering an approximately
circular central region, also expanding with increasing time. The time variations in
this region are much more rapid than in the bordering vortices.

Despite the more complicated structure, the mechanism of action of the secondary
β-gyres is exactly the same as that of the primary ones. At each moment the
configuration of the vortex centres correlates well with the signs of the components
U2p, V2p as is seen when comparing figures 11 and 12. Thus the interaction between
the dipole vortices makes a contribution to the progressive motion of the vortex; the
rapid time changes in the central region produce only the oscillatory part (U2os, V2os)
of the translation speed, which is unimportant dynamically despite its large amplitude.

The features of the secondary β-gyres are determined by the behaviour of the
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Figure 12. Time evolution of the secondary β-gyres.

right-hand side of (6.1e), which is conveniently rewritten as

∂q3

∂t
+ Ω̄(r)

∂q3

∂θ
= R20β + R201 + R221, (7.9)

where

R20β = −∂Ψ20

∂x
, (7.10)

R201 = −J(Ψres, q20)− J(Ψ20, q1), (7.11)

R221 = −J(Ψres, qqdr)− J(Ψqdr, q1)− ∂Ψqdr

∂x
. (7.12)

The term R20β is the β-term part due to the axisymmetric correction Ψ20; R201

represents the interaction between the axisymmetric component and the primary
β-gyres; R221 is produced by the quadrupole fields,

Ψqdr = B̄2s sin 2θ + B̄2c cos 2θ, qqdr = q2s sin 2θ + q2c cos 2θ. (7.13)

The contributions from the terms R20β , R201, and R221 to the secondary β-gyres behave
in very different ways.

The contribution to the Ψ3 field from the term R20β evolves in a manner similar
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to the primary β-gyres, giving rise to a broad uniform flow in the central region
advecting the vortex southwestward. Namely, this term produces a major part of
the positive correction U2p to the zonal translation speed. In turn the corresponding
contribution from the term R201 results only in relatively fast oscillations in the vortex
vicinity and contributes very little to the progressive vortex motion.

The streamfunction field produced by the quadrupole component (the term R221),
being a simple dipole at the initial stage, becomes in the course of time a complicated
system consisting of intensifying vortices elongating in the azimuthal direction and
being wound around an expanding approximately circular central region (not shown).
Interaction between these vortices induces in the central region relatively weak almost
rectilinear flow advecting the main vortex northward. Thus the quadrupole compo-
nent produces an increase of the vortex meridional translation speed as is seen in
figure 11(b).

Similarly to the case of the primary β-gyres the right-hand side of (7.9) multiplied
by α3 is a residual produced by the sum Ψ0 + αΨ1 + α2Ψ2 being substituted into
the vorticity equation. It is very important, therefore, that the right-hand side grows
rather slowly in time. For example at t = 100 the right-hand-side amplitude does
not exceed 60, i.e. the residual remains small even for the relatively low-amplitude
case α = 0.08. As in the case of the primary β-gyres this slow growth is caused by
the structure of the fields Ψ1, Ψ2. The most rapid growth is related to the spatial
gradients ∇q1,∇q2, the strongest gradients being located approximately at the vortex
core (see, for example, figure 5). In the Jacobian terms J(Ψres, q20) and J(Ψres, qqdr)
these gradients are compensated by the smallness of Ψres in the central region (see
§ 5). In turn, the quadrupole streamfunction Ψqdr , being rather small in magnitude, is
also located mainly outside the region of strong gradients of q1 (see figure 8). This
results in a slow growth of the Jacobian J(Ψqdr, q1). Finally, the term

J(Ψ20, q1) =
1

r

∂Ψ20

∂r

∂q1

∂θ

does not contain rapidly growing spatial derivatives.
Thus we see that the residual produced by the sum Ψ0 + αΨ1 + α2Ψ2 remains small

for relatively long times, at least up to t = 100 (100 advection times Ta). In the case
α = 0.08 (a typical value for the mid-oceanic eddies) the relative vorticity drops by
approximately 18% by the time t = 100, i.e. this time is comparable to the distortion
time Td. Therefore the sum Ψ0 + αΨ1 + α2Ψ2 can be a good approximation up to the
distortion time Td.

8. Discussion and conclusion
The mechanism of vortex deceleration somewhat resembles coupled wheels: the

main vortex creates the primary β-gyres advecting the vortex along some trajec-
tory; the primary β-gyres produce the axisymmetric and quadrupole corrections; the
axisymmetric and quadrupole corrections together with the primary β-gyres induce
the secondary β-gyres, decelerating the vortex motion and affecting its trajectory.
All these processes ultimately result from the β-effect and proceed simultaneously,
which makes a theoretical description of the vortex evolution a very complicated task.
However, the problem is simplified in the case of an intense vortex where evolution
is characterized by three well-separated time scales: the advective scale Ta, the wave
scale Tw , and the distortion time Td:Ta � Tw � Td. The smallness of the parameter
α = Ta/Tw allows us to seek the solution in the form of an asymptotic expansion
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in terms of α. One might have expected the time of applicability of this expansion
to be restricted to several advective times Ta, i.e. much smaller than the wave time
Tw . However, our investigation shows that the first three terms of this asymptotic
representation can serve as a good approximation for much longer times, at least up
to t = 100Ta. For a moderate-amplitude vortex characterized by α = 0.08 (the case
of a mid-ocean eddy) the time 100Ta corresponds approximately to the destruction
time Td, i.e. the asymptotic representation can be a good approximation up to the
stage of the vortex destruction.

The first stage of the vortex evolution, t 6 Tw , is dominated by the development
of the β-gyres and other factors can be neglected. A gradual increasing of the β-gyre
magnitude and size is accompanied by the rise of practically rectilinear uniform flow
in the main vortex vicinity, intensifying and expanding with increasing time. Namely
this flow advects the vortex along the dipole axis. Such a structure of the β-gyres in
the vortex vicinity was clearly seen in all numerical experiments with intense isolated
vortices (e.g. Fiorino & Elsberry 1989), and turns out to be of great importance, since
it ultimately provides the applicability of the asymptotic solution for long times.

The enhancement of the β-gyres results in the amplification of the axisymmetric
and quadrupole corrections. The axisymmetric correction is opposite (the same) in
sign to the initial vortex in the vortex core (on the vortex periphery). Therefore
in the course of time the axisymmetric vortex spreads out and decays. The rather
complicated radial dependence of the azimuthally averaged relative vorticity given by
the asymptotic theory is qualitatively the same as obtained in numerical experiments
by Smith et al. (1995) with a Gaussian non-divergent vortex. Thus one might expect
that such a structure is typical for vortex evolution on a β-plane. The energy and
enstrophy of the axisymmetric component decrease practically linearly with respect to
time with a rate directly proportional to α2. Correspondingly, the typical lifetimes of a
vortex obtained with use of the laws of energy and enstrophy conservation are directly
proportional to the vortex streamfunction amplitude and inversely proportional to
the squared Rossby wave group velocity βR2

d . For the open-ocean eddies the typical
lifetime turns out to be about 130 days, while for oceanic rings the corresponding
lifetime is about 650 days.

Advection of the planetary vorticity by the axisymmetric and quadrupole com-
ponents along with the nonlinear interaction of these components with the primary
β-gyres produces the higher-order dipole circulation (so-called secondary β-gyres),
affecting the vortex speed due to the primary β-gyres. As this takes place, the total
speed and its zonal component decrease, whereas the meridional one increases, i.e. the
vortex decelerates and deflects poleward. The zonal deceleration of the vortex is pro-
duced mainly by the advection of planetary vorticity by the axisymmetric correction
(β-effect), and the meridional acceleration (which is also observed in numerical ex-
periments) is due to the effect of the quadrupole component. These features were also
clearly demonstrated in numerical experiment by Sutyrin et al. (1994) with Gaussian
vortices.

The analysis of the primary β-gyres for t → ∞ shows that the velocity of the
almost uniform advecting flow in the vortex vicinity tends to the drift velocity of
Rossby waves −βR2

d . Thus, to leading order the system locally tends to the non-
radiating state which is the sum of an axisymmetric vortex moving with the drift
speed and of the uniform zonal flow having the same velocity. It is important that this
tendency speeds up with increasing vortex amplitude. The existence of this tendency
explains the so-called self-binding effect – the decreasing efficiency of wave radiation
with increasing vortex amplitude – clearly demonstrated in numerical experiments by
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Horton (1989), Smith & Reid (1982) inter alia (see also § 6). The secondary β-gyres
retard this tendency and make it transient but their influence is weak for sufficiently
long times for a large-amplitude vortex.

The above consideration leads us to the simple but important conclusion that the
vortex translation speed and consequently the vortex track are determined by the
dipolar component of the motion. This is clearly seen from the moment equations
(3.8a, b) whose left-hand sides vanish in the absence of the dipolar component. Thus
a correct description of the vortex dynamics is determined in many respects by the
ability to describe correctly the behaviour of the β-gyres. In its turn this behaviour
(at least for the divergent vortex) is determined mainly by near-field processes and is
only slightly influenced by the far-field radiation up to rather large times.

The situation for a non-divergent vortex (which is of interest for atmospheric
applications) is not so clear and calls for further investigation. The primary β-gyres
induced in the vortex near field correctly describe the vortex evolution for times of
the order of the wave time Tw . At the same time these β-gyres decay very slowly
as r → ∞, and the far-field Rossby wave radiation providing the correct behaviour
of the solution at infinity is of importance even at the first order (Reznik & Dewar
1994; Llewellyn Smith 1997).
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Appendix
To derive the asymptotics of A(r, t) for r fixed, t→ ∞ it is convenient to represent

this function in the form

A = r − I1(r)P1 − I1(r)P2 −K1(r)P3, (A 1)

where

P1 =

∫ ∞
R0

r2K1(r)e
−iΩ̄tdr, P2 =

∫ R0

r

r2K1(r)e
−iΩ̄tdr, P3 =

∫ r

0

r2I1(r)e
−iΩ̄tdr, (A 2)

and R0 � 1. Using integration by parts one can readily show that

P2 = O(1/t), P3 = O(1/t). (A 3)

To estimate P1 we rewrite it in terms of the new variable

b =
K1(r)

r
. (A 4)

Using the asymptotic of K1(r) for r � 1 (e.g. Gradshteyn & Ryzhik 1980) we obtain

P1 ≈
∫ b0

0

r3(b)e−ib̃tdb ≈ −
∫ b0

0

ln3 be−ib̃tdb, (A 5)

where

b0 = b(R0), t̃ = I1(1)t. (A 6)

To estimate the integral

D = −
∫ b0

0

ln3 be−ib̃tdb, (A 7)
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we represent it in the form

D = −1

t̃

∫ b0 t̃

0

ln3 u

t̃
e−iudu = −1

t̃

∫ b0 t̃

0

(ln3 u− 3 ln2 u ln t̃+ 3 ln u ln2 t̃− ln3 t̃)e−iudu,

(A 8)
and use the asymptotic formula∫ s

0

eix lnn xdx = −ieis lnn s+ Cn + O

(
lnn−1 s

s
eis

)
, s→∞, (A 9)

Cn = in

∫ ∞
1

lnn−1 x

x
eixdx+

∫ 1

0

eix lnn xdx, n > 0.

As a result we have

P1 ≈ D = −G(̃t), (A 10)

whence (5.12a) follows.
To derive the asymptotic formula (5.10a, b) for u = Ω̄(r)t fixed, t→∞ we represent

A in the form

A = r − I1(r)P̄1 −K1(r)P̄2 −K1(r)P̄3, (A 11)

where

P̄1 =

∫ ∞
r

r2K1(r)e
−iΩ̄tdr; P̄2 =

∫ R0

0

r2I1(r)e
−iΩ̄tdr; P̄3 =

∫ r

R0

r2I1(r)e
−iΩ̄tdr. (A 12)

One can readily obtain that

P̄1 ∼
∫ b

0

r3(b)e−ib̃t db ≈ −
∫ b

0

e−ib̃t ln3 bdb = −1

t̃

∫ u

0

e−iv ln3 v

t̃
dv

=
ln3 t̃

t̃

∫ u

0

e−ivdv + O(ln2 t̃/̃t),

so that

P̄1 =
ln3 t̃

t̃
i(e−ix − 1) + O

(
ln2 t̃

t̃

)
. (A 13)

Using the asymptotic formula

I1(r) ∼ 1

2b ln2 b
, r →∞, (A 14)

we write P̄3 as

P̄3 =

∫ r

R0

r2I1(r)e
−ib̃t dr ∼

∫ b0

b

e−ib̃t

2b2
db =

t̃

2

∫ b0 t̃

u

e−iv

v2
dv,

whence

P̄3 =
t̃

2

∫ ∞
u

e−iv

v2
dv + O(1/̃t). (A 15)

Finally, one can readily show that

P̄2 = O(1/t). (A 16)
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Using (A 13), (A 14), (A 15), (A 16) and the equations

K1(r) =
r

t̃

K1(r)

r
t̃ =

ru

t̃
, r = ln t̃+ O(1) for u fixed, t→∞ (A 17)

we obtain (5.10a, b).
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